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Climate Change — Hydrologic Impllcatlons

Temperature
m Increasing Temperatures |
Evapotranspiration
Water Quality
m Change Iin Precipitation Patterns
Streamflow; Water availability ‘¢80 =

Intensity, Frequency and
Magnitude of Floods and
Droughts

Groundwater Recharge

m Rise in Sea Levels " contittes
Inundation of coastal areas
Salinity Intrusion

Precipitation G

Salt Water Intrusion in Coastal Areas

Excess

C. Ophardt c.1997
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Water Resources : Issues of Climate Change

*Water availability
How do water fluxes vary on catchment scale
Major River

In response to global climate events? Basins of
Groundwater Recharge

*Water Demands
sEvapotranspiration - Irrigation Demands
Municipal and Industrial Demands
*Ecological and Environmental Demands

BANGLADESH

sImpacts on Water Quality

Change in frequency and magnitude of
extreme events (floods and droughts)

. Copyright (¢) Compare Infobase Py Lid. 2001-02
*Delays in onset of monsoon:

: Source for the map:
sImpact on Agriculture b

www.mapsofindia.com

«Salinity Intrusions & Coastal flooding



»General Circulation Models (GCMS):  scnematic for Global
Tools for simulating time series of Atmnsphenc Hodel
climate variables globally, accounting for b
effects of greenhouse gases in the ,.,;.; i A
atmosphere. - .

£ e
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»can simulate largescale circulation
patterns (e.g., pressure and geo

spatial scale of a GCM: > 29, (e.qg. For scientists divide the planet into a 3-

Coupled Global Climate Model (CGCM2) dimensional grid, apply the basic
3.75%in both latitude and equations, and evaluate the results.

longitude(>150Km.)) Atmospheric models calculate winds,

Scale for modelina hvdroloai heat transfer, radiation, relative
€ 10r modeling hydrologit process humidity, and surface hydrology within

(precipitation) :order of 50 Km each grid and evaluate interactions
with neighboring points.

potential heights) well %
»do not reproduce well nonsmooth Climate models are systems of =
fields such as precipitation. differential equations based on the &
basic laws of physics, fluid motion, =

»Scale Mismatch: and chemistry. To “run” a model, =
=3

QD
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http://en.wikipedia.org/wiki/Differential_equations�
http://en.wikipedia.org/wiki/Physics�
http://en.wikipedia.org/wiki/Fluid_dynamics�
http://en.wikipedia.org/wiki/Chemistry�
http://en.wikipedia.org/wiki/Winds�
http://en.wikipedia.org/wiki/Heat_transfer�
http://en.wikipedia.org/wiki/Radiation�
http://en.wikipedia.org/wiki/Relative_humidity�
http://en.wikipedia.org/wiki/Relative_humidity�
http://en.wikipedia.org/wiki/Hydrology�
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Need for Downscaling

Some existing gaps between GCMs” ability and hydrology need

GCM Resolution
e.g. HADGM2 2.50 x 3.750

Better sumulated  Less-well sumulated  Not well simulated

Spatial scales Global Regional Local 2
. = - Eeg Ec?n?l Climalgol'l\-{"lcdel
Mismatch 500 %500 km 50% 50 km 0-50 km & Sl
g
g
Temporal scales Mean annual Mean monthly Mean daily _
. S Hydrelogy
Mismatch and seasonal
Vertical scale 500 hPa 800 hPa Earth surface Vegatation
Mismatch
o
. . - . - . . 1 3:—.':,_ T n
Working variables  Wind Cloudiness Evapotranspiration g Rl
k=4
- L - £
Mismatch Temperature Precipitation Runoft g
. T : . Social Systems
Aur pressure Humidity Soil moisture

oMby delos | —
Hydrological importance increases _—

Source: Xu Chong-Yu, Water Resources Management 13: 369-382, 1999.
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Distributed hydrologic models

Distributed Model Data: Cell Connectivity

./ Drainage Network
Easin Boundary
Select Streams

T, Drainage Basin Boundary

MDA / BATE | The COMET Progesm

Simulate Streamflow,
Evapotranspiration, Soll
Moisture, Deep percolation,
Detention Storage and other
surface water processes
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A computational grid in a
distributed model (typical

AN

size, 12 km to 20 km) g = N+1
Bare soil
P
e, E. E Lant_j-cover
y: b4 (vegetation) classes
Canopy
Layer 1 W ~ Qq _ —
(0—10 cm) 1 E = Evapotransplratlo_n
Q2 E. = Canopy Evaporation
Layer 2 row, E, = Baresoil Evaporation
(10— 40 cm) | Q, = Direct Runoff
Q2 Q, = Subsurface Flow
Layer 3 W, Qp, = Grav?ty flows layer 1 to 2
(40 — 140 cm) Q= Qrav!ty flows layer 2 to 3
| = Infiltration
T 77 Q P = Precipitation

W,, W,, W, = Water content in
respective layers
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Projecting Climate Change Impacts on Water Resources

Climate Change Projections Topography, Land-

(precipitation, temperature, use/Land Cover ; Soil

radiation, humidity) characteristics; Other
catchment data

Downscaling

Hydrologic Model

l

Possible Future Water
Resources Scenarios at Basin

Scale (Streamflow — flow duration

curves, Rainfall, Evapotranspiration —
crop water demands, Soil Moisture,

Infiltration, Groundwater Recharge etc.)




Downscaling Models Developed

« Principal Component Analysis-Fuzzy Clustering-Linear Regression
» Artificial Neural Networks (ANNS)

e Support Vector Machines (SVMs)

 Relevance Vector Machines (RVMSs)

 Conditional Random Fields (CRFs)

e Canonical Correlations

10
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Three levels of uncertainties
addressed

m All model outputs and all scenarios are equally
likely

m Models and scenarios weighted with respect to

their performance Iin the recent past (1990-2005)
when climate change signals are visible

m Models and scenarios are weighted with respect
to their agreements on future projections.

11
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pdfs of Drought Indicator

m All
scenarios 1 . . . . 1
are equally
possible

m  Projections
from all
GCMs are 0 .
equally - 4
likely to be 1 , ,
realized.

m Time series
generated
by a
downscaled
GCM
simulation SPI-12
with one
scenario 1s
considered % g,
as one
realization.
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Mahanadi River Basin - Streamflow
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Climate Predictors

2m Surface Temperature

Geopotential Height at 500 hPa

Specific Humidity
Mean Sea Level Pressure

Hirakud Dam

Predictand:

Monsoon Streamflow
of Mahanadi River at
Hirakud Dam
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Observed and Predicted Streamflow
(from NCEP/NCAR reanalysis data)
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Projected Streamflow CDF
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Projections for future monsoon inflows
to Hirakud Reservoir

x 10" Flow duration curve for Mahanadi river at Hirakud years 2045-2065

3-5 I I I I I I I T T
! m CUrrent (1959-2005)
3vL e MIROC3.2 A1B 204565 1
N MIROC32 A22045.65 || |-
=250F0 MIROC32 B1204565 | |
£ ~---CGCM2A1B 204565 ||
% 2l \ ----CGCM2A2204565 |1
3 CGCM2B1204585 || | ull
E L3} R GISSAIB204565 | & o & & & & & o
5 R o GISS A2 204565 .
5 o1 GISS B1204565 Reduction in
‘normal’ (middle
ol T T level) flows
0 | T T T T )
0 10 20 30 40 50 60 70 80 90 100

Percent of time discharge equalled or exceeded

Range of projected future flow duration curves at Hirakud
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Urban Flooding

Urbanisation alters the hydrology of a region; rainfall — runoff
relationships get affected; quicker and higher peak flows ; more
runoff

- After Urbanization

Before
o Urbanization

— i 17



Bangalore Floods

How do the short
term intensities of
rainfall respond to
the climate change?

Urban Flooding

Likely changes in IDF
(Intensity-Duration-
Frequency) relationships
due to climate change

18
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Bangalore City — Change in the IDF
Relationships

Comparison of IDF for return period of 10 years

100
90 ¢ 90174 ——1969-2003
—~ 1969-1986
= 0 Ze7e0
s 1987-2003
£ 70
> o 62.672
I ?453.898
c
g > \
43.471
£
= \ 33.651
c ¥ 968
é:d 20 17.45 D @
10 M b
0 T T T !
1 2 6 12 24

Duration (hours)
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Bangalore City : Projected change in the IDF Relationship :- CMIP5
models with AR5 scenarios

IDF Curve for 10 Year Return Period for Observed and Different Future Scenarios
CMIP 5 Ensemble 150 . . . .

J/ 160 T T
—— Observed

Downscaling (Daily —roe merame |
Scale) Rainfall

l

Stochastic
Disaggregation

100 -

Rainfall Intensity in mm/h
8

Rainfall Intensity in mm/h

Hourly and Sub-
hourly Scale Rainfall
Intensity

0 | | | |

Ensemble Averaged 0 5 10 15 20
. . Duration in Hours
Projections



Rainfall Intensity in mm/h

IDF Curve for 10 Year Return Period for Observed and Different Future Scenarios
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Impacts on River Water

Quality
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Dissolved Oxygen Depletion

Clean Zone

Trout, perch, bass;
mayfly, stanefly,
caddisfly larvae

Biochemical
oxygen d-eiand

s iy

(From: Environmental Science: A Global Concern, 3rd ed. by W.P

Decomposition Zone

Trash fish; blackfly and

. midge larvae

Septic Zone

Fish absent; sludge
worms; midge and
mosquito larvae

Recovery Zone

Trash fish; blackfly and
midge larvae

Clean Zone

Trout, perch, bass;
mayfly, stonefly, caddisfly
larvae

e
. ,:-—-—"-.-

Oxygen sag

Cunningham and B.W. Saigo, WC Brown Publishers, © 1995)
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Tunga-Bhadra River

Shimoga City Sewage (4
Tunga S {‘*rm'{":‘*
- — AN~ AL
. {
Shimoga 7
| =]

Location of Tunga-Bhadra
river basin

Honnali City Sewage

Bhadra
- - Kumudavathi
avalli Honnali |
BhadravathiCity Tunga -Bhadra River : Harihar City Sewage
\4
Q

= = =P Head Water Flow

= Point Load Dhavangere

O Reach Hp @ * City Sewage

i |
. Reach End point Byladahalli Ell

[] Check point Haridra

MPM - Mysore Paper Mill
VISL - Vishveshwaraya Iron and Steel Limited
HPF - Harihara Poly Fibers
24
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Water Quality Response to Hypothetical
Scenarios using QUAL2K

% change in Streamflow —+—Check Point2 —#—Check Point4 —+—CheckPoint5 ——CheckPoint§
0 —+#—Check Point9 —e—Check Point 11 ——Check Point 13
2 1030 1020 16
4 NQ::Q —— 14 —
= r ;
\ \‘TF%’“ 12 —
-8 % 3 //
\ \q 10 - ,
-10

7

M \ \

AT = 19C " AT = 0¢ \

%% change in Dissolved Oxygen

P
| ot

% change in Water Temperature
N

\

-16
-18 \\ /AT =1°C AT =2°C
-20 ://
——Check Point 2 ——CheckPoint 4 —+ CheckPoint 5 ——Check Point § 0 -10 -20 0 -10 -20
Check Point 9 —=—Check Point 11 — Check Point 13 % change in Streamflow
Change in DO level in response to Change in River Water Temperature in
change in streamflow for a given response to change in streamflow for a

temperature change given Air temperature change

25
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Statistical Downscaling : Selection of
Predictnad Variables

Input Variables to a water quality model Predictand Variables Selected
Streamflow
Water Temperature 1. Streamflow
Variables for a Water Temperature Model 2. Average Air Temperature
River temperature is mainly controlled by 3. Maximum Temperature
ambient atmospheric conditions (e.g. Edinger et 4. Minimum Temperature
al.,1974; Ward,1985; Wu,1992; and Stefan and 5. Dew Point Temperature
Preud’homme,1993) 6. Average Wind Speed
7. Relative Humidity

Average Air Temperature
Relative Humidity
Wind Speed
Dew Point Temperature
Solar Radiation
Maximum Temperature
Minimum Temperature

» Effluent loadings and Diffuse Sources are assumed as unchanged in the future.
26



DO Levels at various Check Points

Check Point 1 Check Point 10

- 7.00 _ 7.00
2650 g7 2 650
S 600 — — S 6.00
2550 — Aty S 550 299
O 500 — B, G O 500 — 5.39 I
S o 5.15
L 450 — B — 489 £ 450 — — -
g 400 — — S — - g 4.00 451
Q 350 Q 350

present  2010-2040 2040-2070 2070-2100 present  2010-2040 2040-2070 2070-2100
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Impacts on lrrigation

Water Demands
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Factors affecting Crop Evapotranspiration
*Air Temperature

Net Radiation
*Wind Speed

Vapour Pressure

(EVAPORATION

(PRECIPITATION)

*Relative Humidity
*Soil Moisture
*Type of Crop

TO GROUNDWATER, RIVERS. SE &,
«Season of Crop Growth

29
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http://eoedu.belspo.be/en/applications/evap-contexte.asp?section=4.1�
http://eoedu.belspo.be/en/applications/evap-contexte.asp?section=4.1�
http://eoedu.belspo.be/en/applications/evap-contexte.asp?section=4.1�

Irigation water requirements are affected by
Crop/soil characteristics : type of crop, cropping pattern, crop
season, growth stage of the crops, soil type and topography.
Climatic factors: rainfall and evapotranspiration
Evapotranspiration: complex function of various
climatic variables including air temperature,

wind speed, relative humidity, and solar radiation.

30
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Bhadra Command

Downscaling Results of Area
Rainfall

Locatlon 1 Location 3
[——ons erved — NCEP Simulated — Predicted from Miroc 3.2 GCM(ZOcsm)\ ‘ 2000F "[—— Observed —— NCEP Simulated — Predicted from Miroc 3.2 GCM (20c3m)] -
1000 .
} ‘ - I ~1000} .
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| “"‘ \ I nnn ‘\ I\ £ “ ““ | ‘ ﬂ"ﬂ‘}ﬁ\\k“ il
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oooooo :
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i | 1 1 |} \ |
£ 200 I __ 100 0o ’ - ( T Y O
| A € | | Al | Il
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e TR ° |
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501 é it éé& e S0 ++ + $$$ + é%l
Ozé% é@é é%% ik % R T BB8 13 s 00 RSN
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(b) (b)

(a)shows the observed, simulated from NCEP data and predicted from MIROC 3.2 GCM with 20c3m
experiment for the training period of 1971 to 1995, (b) represents the future projections from MIROC 3.2 GCM
with A1B scenario for each month ; green box plots for period 2020-2044, blue box plots are for period
2045-2069 and the red box plots are for period 2070 to 2095. 31



" A
Bhadra Command

Downscaling Results of Area
Relative Humidity and Wind Speed

+obem 4
13—
H-O—t+
—
+
——
— T
D I 1 ]
T

Relative Humidity (%)

~
[e]

S 2|t

65 N . s ]
62 1 1 1 1 1 1 1 1 1 1 1
Observed NCEP GCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

@ (b)

T 4

4

| o M
3‘ %%s% it %%g |

3.4

Wind Speed (kmph)

]

2r 1 1 1 1 1 1 1 1 1 1 -
Observed NCEP GCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
[CY] (b)

(a) Denotes annual scale observed, simulated from NCEP and simulated from MIROC 3.2
GCM with 20c3m experiment for the training period of 1971 to 1995.
(b) Denotes monthly scale projections; green box plots are for 2020-2044; blue box plots

are for 2045-2065 and red box plots are for 2070-2095.
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" A
Bhadra Command

Downscaling Results of Area
Maximum and Minimum Temperatures

EARRANRE S
;Héﬁgﬁw ﬁg

301

32.5

+

32

Maximum Temperature (Deg C)

30

Ty

] 29 1 1 1 1 1 1 1 1 1 1 1 11
Observed NCEP GCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(@) (b)

220'5 ] 23i N % i
é, 20 1 22 % ¢¢ ? i
o P A o
- % %m; : j F i g j

. . . 17k L L L L L L L L L L L
Observed NCEP GCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
@ (b)

(a) Denotes annual scale observed, simulated from NCEP and simulated from MIROC 3.2
GCM with 20c3m experiment for the training period of 1971 to 1995.
(b) Denotes monthly scale projections ; the green box plots are for 2020-2044, blue box

plots are for 2045-2065 and red box plots are for 2070-2095.
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Monthly Reference Evapotranspiration for Bhadra
Command Area Estimated from MIROC 3.2 GCM Output
with A1B Scenario

250

M ohserved

m 2020-2044
200

1 2045-2069

W 2070-2095
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u
(==}

=
o
(==}

Reference Evapotranspiration (mm)
(9]
o

[e=]
I

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Penman-Monteith —— 0.408A(R —G)+7(900/ (T +273))U, (e, —€,)
evapotranspiration Model o A+y(L+0.34U,)
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Projected Annual Water Requirements

Irrigation Water
Requirement (M.cu.m)

Irrigation Water
Requirement (M.cu.m)

30
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o .=
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Location Location
Permanent Garden

2

Semidry Crops
20 . . — .

-
[¢)]
T

Irrigation Water
)

Requirement (M.cu.m)

[¢)]

3 4 5 6 7 0_”
Location Location

Bl Present [ ]2020-2044 [ ]2045-2069 [l 2070-2095
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Detection and attribution
of human-induced climate

change in basin-scale
hydrology
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Detection and Attribution (D&A) of
human-induced climate change

"
b "
u 0"
e = E )
A ' El
v we ™ aw W B es ws §
» @ "Ozone ar g
1) a0 -
. i e " g
S B :
- " S
Direct SO, aerosol » ‘”7 a =
" » § -
. " H =
N s .. e =]
o - S 5
s ois o wn oum E T s
—— | — — T —

m  Fingerprint of human-induced climate change searched for, in
observations

m ‘Detection’ of climate change is ‘the process of demonstrating that
climate or a system affected by climate has changed in some defined
sense, without providing a reason for that change’.

m ‘Attribution’ is ‘the process of evaluating the relative contribution of
multiple causal factors to a change or event with an assignment of
statistical confidence’.

Source : IPCC, (2007) 37



"
Why Is D&A Analysis Necessary?

m |IPCC AR4 infers:
Observed warming extremely unlikely due to unforced variability alone

Human emission induced greenhouse gases (GHGSs) very likely caused most
of the observed warming since mid-century

m |t becomes necessary to assess whether a signal of human-induced
climate change is indeed discernible in hydrological observations in the
past, considering scale issues and variability across climate models

m It helps in quantifying such changes, and thus can be used to increase
reliability in future projections
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Mahanadi river basin
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m Monsoon (JJAS) precipitation at 8 IMD locations, and accumulated

monsoon streamflow at Hirakud dam considered

39



‘Annual Mansoon Preciitation () Annual Monsoon Preciptation ()

Annual Monsoon Precipitation (mm)
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Trends in observed monsoon (JJAS)
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Are these decreases a part of
natural internal climate
variability alone, in absence of

any external forcings?
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D&A results: Signal-strengths for

m Monsoon streamflow
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The ensemble-averaged signal strengths (S values) from each model run (dots) and their 95% confidence
intervals (bars) are shown. The observed signal strength (S, with its 95% confidence interval,
considering the multi-model ensemble-averaged ANTH fingerprint is shown in black. The GCMs for
which the ANTH signal strength is inconsistent in sign with the observed signal strength are marked in
cyan and those for which the ANTH signal strength is consistent with the observed signal strength are
marked in blue. 41
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Major findings for Mahanadi river basin

m observed trends over the second half of the twentieth century in both
monsoon precipitation and streamflow lie outside the range expected from
natural internal climate variability alone at 95% statistical confidence level
for most of the GCMs

m observed hydrological changes cannot yet be collectively attributed to
human-induced climate change across all the climate models

m  multi-model ensemble averaged anthropogenic signal strength is found to
explain the trends in the observations, for both monsoon precipitation and
streamflow — Detection more conspicuous in streamflow!

m there may exist uncertainties in the analysis because of the detection
methodology, data and/or models

42



=
Science Issues

m Detection and Attribution at Riverbasin Scales (Mondal
and Mujumdar, Water Resources Research, 2012)

m Account for non-stationarity introduced by
anthropogenic interventions and climate change

Stationarity in hydrology is dead (Science, 319, 2008)

m Quantify — and reduce - uncertainties due to a large
number of sources, in the hydrologic projections

m Provide high-resolution climate simulations, specifically
for hydrologic applications.

m Quantify hydrologic feedbacks to the climate system
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Summary

Climate change is likely to impact most hydrologic
processes

Impacts need to be assessed at regional/riverbasin and
smaller scales

GCMs are the most credible tools available today for
Impact assessment

Scale issues and uncertainties are addressed In recent
studies

Impacts on flow distributions, IDF relationship, river
water quality and irrigation demands are assessed

‘Detection and Attribution’ studies are carried out at river
basin scales.
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THANK YOU
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IPCC SRES (2001)

Scenarios(40)

|
v v v v

Al A2 B1 B2 (family)
|
I
Al1F Al1B ALT (group)

Fossil fuel Balanced Non fossil fuel

Scenario Al A2 B1 B2

family

World order Integrated Divided Integrated Divided

Ecologically No No Yes Yes

friendly

Population Increases till Continuously Same as Al Increasing but
2050 and then increasing lower than A2
declines

Economic Rapid Regionally Rapid (service- Intermediate

growth oriented oriented)

Technology Rapid Slower Rapid Slower

growth fragmented fragmented 46



IPCC Scenarios
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Presenter
Presentation Notes
Giga = 109 tonne = 103


http://www.grida.no/climate/ipcc/emission/005.htm�
http://www.grida.no/climate/ipcc/emission/005.htm�

Climate change projections
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Evapotranspiration Model

The evapotranspiration projections are modeled
with  a Penman-Monteith evapotranspiration
model (Allen et al., 1998) accounting for the
projected changes in temperature, relative

humidity, solar radiation and wind speed.

er _ 040BA(R, —G)+y(900/ (T +273))U, (e, —€,)
bR A+ y(1+0.34U,)

ET,, =ET , XKk,

Reference Evapotranspiration (mm)

250

200
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100

50 4
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m 2020-2044

2045-2069

m 2070-2095

Jan  Feb Mar Apr May Jun

Jul  Aug  Sep Oct Nov Dec

where ET, . is the reference evapotranspiration of each month (mm/month); A is slope of the vapor

pressure curve, R, is net radiation at the surface (w/m2); G is the soil heat flux density (w/m?2), ¥ is

psychrometric constant (kPa °C-1) = 0.665 x 103 P_, where P, is atmospheric pressure (kPa), T is

the average air temperature at 2-m height, U, is wind speed at 2-m height, is the saturated vapor

pressure and is the actual vapor pressure (kpa). T, is the potential evapotranspiration for each

crop, c for each period, t ; k.. crop coefficient for each period, t for a crop, c.
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